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Pre-Training for Different Types of Architectures

Introduction to LLMs

Encoder-
only

BERT
(already discussed)

Encoder-

Decoder
BART, T5

Decoder-

only
GPT, Llama

Gets bi-directional context — can condition on future!
How do we train them to build strong representations?

Good parts of decoders and encoders?
What’s the best way to pretrain them?

Language models!

Nice to generate from; can’t condition on
future words
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Pre-Training Encoder-Decoder
Models

BART and T5



Pre-Training Encoder-Decoder Models

* Masked LMs: trained bidirectionally but with masking
* How can we pre-train a model for P(y | x)?

* Why was BERT effective?

* Predicting a mask requires some kind of text “understanding”.

* What would it take to do the same for sequence prediction?

Tanmoy Chakraborty
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Recall: Encoder-Decoder
Architecture

e Standard Transformer Architecture

* Decoder attends back to the input. But the
input doesn’t change, so this just needs to
be encoded once.
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Pre-Training Encoder-Decoder Models

* Forencoder-decoders, we could do something like language modeling, but where a
prefix of every inputis provided to the encoder and is not predicted.

Yo, -

h,,..., hy = Encoder (x,, ..., X;)

he,qs .-, Doy =Decoder (y., ..., ¥iq, Ny, ooy Dy )
P(y| | y<i’ h1:T) = SOftmaX(Whi + b)

The encoder portion benefits from bidirectional
context; the decoder portion is used to train the whole
model through language modeling. Xqs eeey XT
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Pre-Training Encoder-Decoder Models

* How can we pre-train amodel for P(y | x)?

* Requirements:
1. should use unlabeled data
2. should force a model to attend from y back to x
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Pre-Training BART (Bidirectional and Auto-Regressive
Transformers)

(Ac. E.) (pe.aBc.) (C.DE.AB)

Token Masking  Sentence Permutation Document Rotation

<
(A.c.e. )y (ABC.DE.) <O (A_.D_E.)

Token Deletion Text Infilling

Infilling is longer
spans than masking

* Several possible strategies for corrupting a sequence are explored in the
BART paper.

Lewis et al. (2019), “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension”
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Pre-Training BART

* Seguence-to-sequence Transformer trained on this data: permute/make/delete tokens,
then predict full sequence autoregressively.

ABCDE
t 4 f44

Bidirectional :> Autoregressive

» Encoder - Decoder -
et FErTt
A B E <ssSABCD

Lewis et al. (2019), “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension”
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BERT vs. BART

B D
* BERT: only an encoder, trained with masked t t
language modeling objective. Cannot Bidirectional
generate text or do Seq2Seq tasks (in < Encoder
standard form). T W W )
A _C_E

ABCDE
ol e * BART: consists of both an encoder and a

Bidirectional 4 Autoregressive decoder. Can also use just the encoder
< Encoder Decoder wherever we would use BERT.
R Frrfd

A_B_E <s>ABCD
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BART for Summarization

* Pre-train on the BART task: take random chunks of text, noise them according to the
schemes described, and try to “decode” the clean text

* Fine-tune on a summarization dataset: a news article is the input and a summary of that
article is the output (usually 1-3 sentences depending on the dataset)

* Can achieve good results even with few summaries to fine-tune on, compared to basic
seqg2seq models which require 100k+ examples to do well
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BART for Summarization: Output Example

PG&E stated it scheduled the blackouts in response to forecasts
for high winds amid dry conditions. The aim is to reduce the risk
of wildfires. Nearly 800 thousand customers were scheduled to
be affected by the shutoffs which were expected to last through
at least midday tomorrow. l

ower has been turned off to millions of]
customers in California as part of a power
shutoff plan.

Lewis et al. (2019)
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GEMINI 2.5

Gemini 2.5 models are thinking
models, capable of reasoning through
their thoughts before responding

Combines a significantly base model
with improved post-training

Gemini 2.5 Pro tops the LMArena
leaderboard by a significant margin.

Gemini 2.5 Pro scores 18.8% on
Humanity’s last exam and leads in
math and science benchmarks

|
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Processing |
IT Delhi

G Gemini

" Anew family of models

40 image generatio capabilities
of the new OpenAl model

March 25, 2025
Google OpenAl

OpenAl 40 Image
Generation

Image generation that is not only
beautiful, but useful.

GPT-40 image generation excels at
accurately rendering text, precisely
following prompts, and leveraging 40’s
inherent knowledge base and chat
context

Trained models on the joint distribution
of online images and text, and learnt
how images relate to language and to
each other

» Gemini 2.5 Pro

Transfer behween Modalities:

Suppose e directy model
pltext, pixels, sound)

with one big autoregressive prioc

Fixes:

Two major announcements:
1) Gemini 2.5 by Google - Advanced

« model compressed reg
+ Compose au{-orc,res
with a powerful F\N

Reasoning
2) OpenAl 40 Image Generation - Mind-

blowing Image generation
ot ===



https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://openai.com/index/introducing-4o-image-generation/

15: Text-to-Text Transfer Transformer

[ "translate English to German: That is good."

"Das ist gut.”]

"cola sentence: The
course is jumping well."

"not acceptable"]
"stsb sentencel: The rhino grazed

on the grass. sentence2: A rhino
is grazing in a field."

15

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county.”

Raffel et al. (2019), “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”
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http://jalammar.github.io/illustrated-transformer/

Pre-Training T5

* Pre-training: similar denoising scheme to BART (they were released within a week of
each otherinfall 2019)

* Input: text with gaps ; Output: a series of phrases to fill those gaps.

Original text

Thank you fef inviting me to your party [ast week.

pis Replace different-length spans from the input

Thank you <X> me to your party <Y> week. with unique placeholders; decode out the
spans that were removed!

Targets

<X> for inviting <v> last <7>

Raffel et al. (2019)
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Common Crawl Web Extracted Text

Menu

Lemon

Introduction

Please enable JavaScript to use our site.

Home
Products
Shipping

Laontant

Lorem ipsum dolor sit amet, consectetur
adipiscing elit.

Curabitur in tempus quam. In mollis et ante
at consectetur.

Aliquam erat volutpat.

Doawnaoaa ot lacinia ~at

The lemon, Citrus Limon (l.) Os?/.

species of small evergreen treg

The tree's ellipsoidal yellow frui

Removed lines that didn’t end in a terminal punctuation \iget
flowering plant family rutaceae mark

rdum

culinary and non-culinary purpos e | gnguage classifier to retain only English text E lacinia at

throughout the world, primarily

which has both culinaryandcle - Removed texts which look like placeholder texts icitur

The juice of the lemon is about

citric acid, withaphofaround{ ® Removed anything which look like code
* Removed duplicated texts

a sour taste.

Article

em non,

a sodales in

/

The origin of the lemon is unknown; tmougn
lemons are thought to have first grown in
Assam (a region in northeast India),
northern Burma or China.

A genomic study of the lemon indicated it
was a hybrid between bitter orange (sour
orange) and citron.

ITIc LIGE'S—E'I'ITP'SUTUETYHIUW ITUIt 1o UsceU 101
culinary and non-culinary purposes

throughout the world, primarily for its juice,
which has both culinary and cleaning uses.
The juice of the lemon is about 5% to 6%
citric acid, with a ph of around 2.2, giving it
a sour taste.
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1F TensorFlow Resources v More Q, Search Language ~ GitHub  Signin

Datasets v1.3.2

Overview Catalog Guide APl

Overview
Audio
Image TensorFlow > Resources > Datasetsv1.3.2 > Catalog ﬁﬁﬁ(ﬁﬁ

Object_detection

Structured C4 (Manual download)

Summarization

Text Contents v
c4 (manual) cd/en
civil_Lcomments Statistics
definite_pronoun_resolution Features
esnli Homepage
gap voe
glue
b i A colossal, cleaned version of Common Crawl's web crawl corpus.
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Pretrain

BERT,,s-Sized
encoder-decoder
Transformer

Denoising
objective

C4 dataset
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Finetune

. GLUE
Pretrain

BERT;,s-Sized
encoder-decoder
Transformer

Denoising
objective

C4 dataset
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GLUE Benchmark
Dataset  [Descripton ~ |Dataexample  ___________________________ |Metic |

Is the sentence grammatical or "This building is than that one."
ColLA ungrammatical? = Ungrammatical Matthews
Is the movie review positive, negative, "The movie is funny , smart, visually inventive , and most of all , alive ."
SST-2 or neutral? = .93056 (Very Positive) Accuracy
A) "Yesterday , Taiwan reported 35 new infections , bringing the total number of cases to 418 ."
Is the sentence B a paraphrase of B) "The island reported another 35 probable cases yesterday , taking its total to 418 ."
sentence A? = A Paraphrase Accuracy / F1

A) "Elephants are walking down a trail."
B) "A herd of elephants are walking along a trail."
How similar are sentences A and B? = 4.6 (Very Similar) Pearson / Spearman

A) "How can | increase the speed of my internet connection while using a VPN?"
B) "How can Internet speed be increased by hacking through DNS?"
Are the two questions similar? = Not Similar Accuracy / F1

A) "Tourist Information offices can be very helpful."
Does sentence A entail or contradict B) "Tourist Information offices are never of any help."
MNLI-mm sentence B? = Contradiction Accuracy

A) "What is essential for the mating of the elements that create radio waves?"
B) "Antennas are required by any radio receiver or transmitter to couple its electrical connection
Does sentence B contain the answer to  to the electromagnetic field."
the question in sentence A? = Answerable Accuracy

A) "In 2003, Yunus brought the microcredit revolution to the streets of Bangladesh to support
more than 50,000 beggars, whom the Grameen Bank respectfully calls Struggling Members."
B) "Yunus supported more than 50,000 Struggling Members."
Does sentence A entail sentence B? = Entailed Accuracy

Sentence B replaces sentence A's A) "Lily spoke to Donna, breaking her concentration."
ambiguous pronoun with one of the B) "Lily spoke to Donna, breaking Lily's concentration."
nouns - is this the correct noun? = Incorrect Referent Accuracy

Introduction to LLMs ""**:-_ "TE] ‘ s | Tanmoy Chakraborty




Finetune

. GLUE
Pretrain

CNN/DM

BERTB A SE—sized

encoder-decoder
Transformer

Denoising
objective

C4 dataset
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Finetune

. GLUE
Pretrain

_ CNN/DM
BERT, ASE—SIZEd

encoder-decoder

Transformer SQUAD

Denoising
objective

C4 dataset

Introduction to LLMs GNPTEL s Tanmoy Chakraborty




Pretrain

BERTB A SE—sized

encoder-decoder
Transformer

Denoising
objective

C4 dataset

Introduction to LLMs

GaNPTEL

Finetune

GLUE
CNN/DM
SQUAD

SuperGLUE
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SuperGLUE Tasks

Name Identifier Download More Info Metric
Broadcoverage Diagnostics AX-b ﬂ"u E Matthew's Corr
CommitmentBank CB .'!'u C};' Avg. F1 / Accuracy
Choice of Plausible Alternatives COPA ﬂ"n C’;‘ Accuracy
'&”{;‘:{:ﬁ:ﬁ;g{fjﬁading MultiRC & £ Fla/EM
Recognizing Textual Entailment RTE -'!'m C)A' Accuracy
Words in Context WiC ﬂ"u C}J. Accuracy

The Winograd Schema Challenge WSC ﬂ"u E Accuracy
BoolQ BoolQ i"m C}Al Accuracy
Commonsense Reasoning | ReCoRD — = F1. Accuracy
Winogender Schema Diagnostics AX-g ﬂ"u C}x. Gender Parity /

Accuracy




Pretrain

BERT -sized
BASE

encoder-decoder
Transformer

Denoising
objective

C4 dataset
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Finetune

GLUE
CNN/DM
SQUAD
SuperGLUE
WMT14 EnDe
WMT15 EnFr

WMT16 EnRo
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Finetune Evaluate on

validation
: GLUE
Pretrain _
BERT -sized CNN/DM
- tep 750000
encoder-decoder SQUAD step
Transformer
step 760000
Denoising SuperGLUE
objective step 770000
WMT14 EnDe
C4 dataset step 780000
WMT15 EnFr
WMT16 EnRo
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GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Baseline average 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Baseline standard deviation  0.235 0.065 0.343 0.416 0.112 0.090 0.108
No pre-training 66.22 17.60 50.31 53.04 25.86 39.77 24.04
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Bold = 1 std. dev. of max
Star denotes Comparable to \ \

| GLUE ONNDM SQuAD | SGLUE EnDe EnFr || EnRo

% Baseline average %8328 1924  80.88< 71.36 2698 39.82°)27.65
Baseline standard deviation 0.235 0.065 0.343 0.416 0412 0.090 0.108
No preirsinig 66.22  17.60 50.31  53.04  25.86 -39.77¢ 24.04

\ Big training set

No pre-training is dramatically worse, except EnFr!
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C4: The Data

* C4:Colossal Clean Crawled Corpus

* Web-extracted text s et Sie
* English language only % C4 745GB
* 750GB C4, unfiltered 6.1TB
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Pre-Training Data: Experiment

* Takeaway:
* Clean and compact data is better than large, but noisy data.
* Pre-training on in-domain data helps.

Data set Size GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
* C4 745GB  83.28 19.24 80.88 71.36 26.98 39.82 27.65
C4, unfiltered 6.1TB  81.46 19.14 78.78 68.04 26.55  39.34 27.21
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Architectures: Different Choices

35
.
N

grm—
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grm—
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-

Language model

Xz %3 X7 Y3

2

Decoder

Encoder
|
S
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Architectures: Different Attention Masks

* Fully visible mask allows the self attention mechanism to attend to the full input.
* A causal mask doesn’t allow output elements to look into the future.

e Causal mask with prefix allows to fully-visible masking on a portion of input.

Fully-visible Causal Causal with prefix

Language model Prefix LM

Introduction to LLMs
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Architectural Variants: Experiments Qawatedforclassiﬁcaﬂontask& J

Architecture Objective =~ Params GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Encoder-decoder Denoising 25 83.28 19.24 80.88 71.36 26.98 3982 27.65

Enc-dec, shared  Denoising /2 82.81 18.78 80.63 70.73 26.72 39.03 27.46

Enc-dec, 6 layers Denoising 7 80.88 18.97 77.59 68.42 26.38 38.40 26.95

Language model  Denoising P 74.70 17.93 61.14 55.02 25.09 35.28  25.86

Prefix LM Denoising P 81.82 18.61 78.94 68.11 2643 37.98 27.39
Takeaways:

1. Halving the number of layers in encoder and decoder hurts the performance.

2. Performance of Encoder-Decoder with shared params is almost on-par with prefix LM.
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T5: Pre-Training Objectives

* Prefix language modeling * Replace spans
* Input: Thank you for inviting * Input: Thank you <X> me to your party <X>
* Output: me to your party last week week

» BERT-style denoising * Output: <X>forinviting <Y> last <Z>

* Input: Thank you <M> <M> me to your party

apple week * Drop tokens
* Output: Thank you for inviting me to your party « Input: Thank you me to your party week .
last week

* Output: for inviting last
* De-shuffling

* Input: party me for your to. last fun you inviting
week Thanks.

* Output: Thank you for inviting me to your party
last week

Introduction to LLMs ‘ ; Tanmoy Chakraborty



Pre-Training Objectives: Experiments

* All the variants perform similarly

* “Replace corrupted spans” and “Drop corrupted tokens” are more appealing because
target sequences are shorter, speeding up training.

Assuming Enc-Dec architecture.
Evaluated for classification tasks.

Objective GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Prefix language modeling 80.69 18.94 77.99 65.27 26.86 39.73 27.49
Deshuffling 73.17 18.59 67.61 58.47 26.11 39.30 25.62
BERT-style (Devlin et al., 2018)  82.96 19.17 80.65 69.85 26.78 40.03 27.41
% Replace corrupted spans 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Drop corrupted tokens 84.44 19.31 80.52 68.67 27.07 39.76 27.82
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Pre-Training Decoder-only
Models

GPT and Llama



Recall: Probabilistic Language Models

P(X)

.k

Sentence/Document

A generative model that calculates the
probability of language

e : ,~ _ ;
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Auto-regressive Language Models

P(X) ZHP(CIZZ | 331,...,33@'_1)

Sea Y T

Next Token Context

- S —— 3 .~ K T
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Next Token Prediction

* This is essentially classification!

* We can think of neural language
models as neural classifiers. They
classify prefix of a textinto |V|
classes, where the classes are
vocabulary tokens.

Image Credit:

Introduction to LLMs

Neural network

J |
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https://lena-voita.github.io/nlp_course/language_modeling.html

Next Token Prediction

d-sized
vector

Transform h linearly
from sizedto |V| - the
vocabulary size

Neural network

OO0 0

[eYeXeXe]
[C0OO]
[00 0 O]
[00 0 O]
[0 O O]
0000

I saw a cat on

o

Image Credit: https://lena

|V| tokens

l

softmax ———

E

Linear
layer

|

]

000000000

4[,_

[

n:vector representation of
contextI saw a cat ona

<— Input word embeddings

Introduction to LLMs

GoNPTEL

' P(x|Isaw a cat ona)

P —

| |

get probability
distribution for
the next token

process context
(previous history)

Feed word embedding for
previous (context) words
into a network.

Get vector representation of
context from the network.
From this vector
representation, predict a
probability distribution for
the next token.
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https://lena-voita.github.io/nlp_course/language_modeling.html

Encoders vs. Decoders

* BERT is a Transformer Encoder: bidirectional attention, trained with masked language
modelling.

P (X | Xq5 009 Xiiqs Xigqs oo osXp)

* GPT and many other Transformer language models (e.g., LLaMA) are Decoders:
unidirectional attention, trained to predict the next token.

P (X;|Xq5.+.5Xi4)

Introduction to LLMs N _._ Tanmoy Chakraborty



Generative Pre-trained Transformer (GPT)

2018’s GPT was a big success in pretraining a decoder!

Transformer decoder with 12 layers, 117M parameters.

768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.

Byte-pair encoding with 40,000 merges
* Trained on BooksCorpus: over 7000 unique books.

* Contains long spans of contiguous text, for learning long-distance dependencies.

Radford et al. (2018), “Improving Language Understanding by Generative Pre-Training”
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GPT-2

GPT-2 is identical to GPT-1, but:
* Has Layer normalization in between each sub-block
* \Vocab extended to 50,257 tokens and context size increased from 512to 1024

e Data: 8 million docs from the web (Common Crawl), minus Wikipedia

Language Models are Unsupervised Multitask Learners

Alec Radford *! Jeffrey Wu "' Rewon Child! David Luan' Dario Amodei **! Ilya Sutskever ** !
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Increasingly Convincing Generations by GPT-2

* We discussed how we can sample sentences from auto-regressive LMs for text generation.
* Thisis how pre-trained decoders are used in their capacities as language models.

* GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to produce
relatively convincing samples of natural language.

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.
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Pre-Training Cost (with GCP/AWS)

« BERT: Base $500, Large $7000

* GPT-2 (as reported in other work): $25,000

* Thisis for a single pre-training run...developing new pre-training techniques may require
many runs.

* Fine-tuning these models can typically be done with a single GPU (but may take 1-3 days
for medium-sized datasets).

Tanmoy Chakraborty
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https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/

GPT-3

Total Compute Used During Training
* 175B parameter model

* 96 layers, 96 heads, 12k-

dim vectors
1000 . o
 Trained on Microsoft
Azure, estimated to cost
e I roughly $10M
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Comparison: GPT-1, 2, 3

Model Parameters Layers Training Data Key Advancement

GPT-1 117M 12 BooksCorpus First large-scale Transformer for MLP
GPT-2 1.5B6 43 WebText Zero-shot learning, larger training data
GPT-3 175B 96 Common Crawl + others In-context learning, emergent behaviors

Introduction to LLMs GaNPTEL vk Tanmoy Chakraborty




Model Usage

G PT— 4 davinci-002 $0.0020 / 1K tokens

Model Input Output

gpt-4 $0.03 / 1K tokens $0.06 / 1K tokens
 Transformer-based

* Therestis.... mystery!

* If we’re going based on costs, GPT-4 is ~15-30 times costlier than GPT3. That should give you an idea
how its likely size!

* Note, these language models involve more than just pre-training.
* Pre-training provides the foundation based on which we build the model.
* We will discuss the later stages next week.

Introduction to LLMs {_ N PT E l_ E—cs% Tanmoy Chakraborty
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Llama: A Family of Open-Source LLMs from Meta Al

 Llama-1 + Llama-2

params dimension n heads n layers learningrate batch size n tokens

6.7B 4096 32 32 3.0e4 4AM 1.0T
13.0B 5120 40 40 3.0e4 4M 1.0T
32.5B 6656 52 60 1.5¢=4 4M 1.4T
65.2B 8192 64 80 1.5¢=4 4AM 1.4T

Table 2: Model sizes, architectures, and optimization hyper-parameters.

* Models have mostly gotten smaller since GPT-3, but haven’t changed much.

* Tokenizer: Byte-Pair Encoding (BPE) [Recall: we have already discussed this algorithm in lecture on
‘Tokenization Strategies’]

* Rotary positional encodings, a few other small architecture changes

* Optimized mix of pre-training data: Common Crawl, GitHub, Wikipedia, Books, etc.

Introduction to LLMs E—cs% Tanmoy Chakraborty

s i s



Next Week: How to Make Pre-Trained LMs Work?

~J
-

Instruction
tuning

* |nstruction Tuning
* Finetune the pre-trained model to follow instructions

(@)
O
T

* Prompting and In-context Learning
* Give few examples of the task that you want the model to solve

No
instruction
tuning

H
-
\

* Reinforcement Learning from Human Feedback (RLHF)
* Train the LMs to align their outputs with human preferences

10 NLU task average
ot
-

w
)

* Also called ‘Preference Optimization’ 1O|2|1 1022| 16'25 1624

Training flops
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